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Mathematical concepts enable us to structure our thinking, corresponding models 
help us to structure reality. They supply us with tools to recognize and solve 
problems. Stochastic models are not mere images of reality that fit more or less. 
Right from the basics they have more the character of scenarios to explore reality. 
This circumstance and only indirect feedback about their success impede 
understanding of concepts and reasonable application of the like models. 
Accordingly, mis-conceptions are abundant and recipe application is ubiquitous. 
Stochastic thinking seems to be quite different from other types of thinking like causal 
thinking, or logical thinking. The educational discussion until the 90’s coined the 
notion of ‘probabilistic thinking’, from the 80’s the discussion shifted to the notion of 
‘numeracy’ and ‘statistical thinking’. By examples and figurative deliberations a 
multi-faceted image of probabilistic and statistical thinking will be given. 
 
 1 Thinking in scenarios – some examples 
The scenario feature of probabilistic thinking will be illustrated by some examples, 
which will also shed light on the merits of the probabilistic approach. 
Transparency of decisions 
In the face of uncertainty, a single decision may be made more transparent if one 
allows for weighing the various possibilities. The competing decisions will get 
thereby (expected) values instead of actual costs or wins.  
The problem dealt with here is, if one should take out a policy for a comprehensive 
insurance of one’s car for the next year. The focus is not on mapping the situation 
precisely onto a model but on illustrating matters; the rough model should just 
highlight the situation and the purpose of modelling by probabilities. The following 
table will give the like costs of the decisions (insurance yes or no) under the 
prospective circumstances (no accident at all, total wreckage). 
 

Decision 
Cost [in Euro] 

A1 = Insurance yes A2 = no 
T1 = No accident 1 000         0 Potential 

future T2 = Total wreckage 1 000 20 000 
 
With hindsight, one can easily tell if it were better to take out a policy – if no accident 
happened, no insurance = A2 is the better decision. If one minimizes the maximal 
cost, then A1 = insurance is better. This corresponds to risk-avoiding behaviour. More 



margin for innovative behaviour will be opened by introducing probabilities: if one is 
ready to ‘weigh’ the possible futures T1 and T2, e.g. by relative weights of 39 : 1 (this 
corresponds to a probability of 1/40 for the total wreckage), then the cost of decision 
A1 still is 1 000, but the cost of A2 has decreased to 500, hence it would be better not 
to take out a policy. Clearly, the actual decision will depend on the weights for an 
accident. Other weights will lead to other decisions. However, the decision is now 
transparent: if one can weigh his/her chances of such an accident by 39 to 1, then A2 
would be better. To free oneself of the burden to fix one’s chances, it could be 
advisable to find the so-called break-even point, i.e. those relative weights at which 
the decision turns from A1 to A2. Here it is 19 to 1. If someone evaluates his/her own 
chance to be higher or lower than this break-even, he/she should decide accordingly. 
With the latter procedure there is no need to weigh someone’s chances exactly. 
Judgment of risks 
Not only technical systems have a reliability of survival dependent from its 
components. One may derive probabilities for the whole system to operate from an 
elementary (or more sophisticated) assumption. The result has more or less the 
character of scenario figures and gains more relevance in the comparison of various 
changes to the system. This will give indications for which changes to promote. 
The following problem is drawn from engineering applications. A system has 3 
components, the reliability of each is 0,95 for a specific purpose – e.g. that they are 
working well for exploring the Titan at a special mission. The system works if B1 and 
B2 operate well, or if B3 works, see Fig. 1 
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Fig. 1 

 
What is the reliability, i.e. the probability of working well for the mission of the 
whole system? Is it better to take two full systems on the mission, or is it better to 
have each component doubled? How many complete systems, or, how many stand-by 
components for each one should be taken on the mission, if the reliability of the 
resulting system is required to be 0,99999 (whatever that should mean) ? 
The standard solution treats the components as if they were independent of each other 
and have really the same reliability. Of course, they are not independent, and they 
have not the same reliability, and their reliability is not 0,95 (this is a qualitative 
statement of the involved engineers). Yet, the scenario is the only way to deal with 
the problem before the spacecraft is sent on its mission to the Titan. From this, one 
gets an idea of the reliability of the final system and if it pays the additional costs to 
build in a specific level of redundancy. A residual risk will always remain; the 
scenarios, however, will allow judging relative risks and costs of the various actions. 



Fixing prices in the face of uncertainty 
Expected values are the basis of fixing prices if the future is open to variation. The 
procedure necessitates weighing the various possibilities. One basis for weighing is 
taken here, namely to extrapolate risks of the past to the future, i.e. to use relative 
frequencies for the estimation of probabilities of the various risks at hand. 
For a single car-owner e.g., the relative weights of a total wreckage have to be 
measured individually, the insurance company may rely on the statistics of accidents 
of the last years. For the sake of simplicity, we will again assume only two 
possibilities, the total wreckage and no accident, for all the policies. With 2% total 
wreckages from the past and 10 000 policies, the bookkeeping of the insurance 
company looks like: 
200 total wreckages with a cost of 20 000 each amounts to payments of 4 000 000, 
i.e. 400 Euro per policy. This amount plus an equivalent for taking the risk plus 
expenses plus profit makes .., let us say 1 000 Euro per policy. 
However, there is always a remaining risk for the company (not in our modelling here 
but in general) that the premium will not be sufficient. How high will be that 
remaining risk? How will it change if there are only 100 policies, or if there are 100 
000? How will it change with various levels of the premium? Are all possibilities 
included in the scenario? No, the scenario is suitable only for a normal financial year, 
for the occurrence of catastrophes the insurance companies have the system of 
reinsurance, which reduces the remaining risk (of making high losses) by a higher 
number of policies.  
Concluding from circumstantial evidence 
At court, if no confession is available, the judges have to rely on circumstantial 
evidence. Doctors diagnosing various diseases have to rely on indications from blood 
tests, X rays, mammography results etc. in order to decide about medication or 
operation of a patient. There are ubiquitous situations where conditional probabilities 
could help to find the direction of further measurements to be taken best. Formal 
calculation is done according to Bayes’ formula. 
In what follows, we will refer to a blood test for diagnosing HIV with the following 
reliabilities: a person with the virus will be recognized by the diagnosing procedure 
(test positive) with a probability of 0,99 (in medical jargon this is called the 
sensitivity); a person not having the virus will be judged virus-free (test negative) 
with probability of 0,987 (the rate of false positives therefore is 0,013). For a person 
with positive result, how high is his/her risk to actually have the virus? If we apply 
the scenario of the person being representative of the whole population, we could use 
the prevalence of HIV (e.g. 0,02%) and come up with a probability of 0,0150. 
Judging the person to belong to a high-risk group with a prevalence of 10%, will 
result in a probability of 0,8943. For a discussion of the input probabilities and the 
interpretation of the resulting probabilities, see also Gigerenzer e. a. (1998). 



How do we perform an adequate calculation of the actual probability of having the 
virus after a confirmation test when the first result was positive and the second then 
also was positive? Can one simply combine two applications of the Bayes’ formula? 
(There is evidence that the reliabilities of the test conditional to the first positive 
result are not the same as before – in other words, if the test has wrongly gone 
positive it will more likely do the same a second time).  
Which scenario is more applicable to the patient? Where do the reliabilities of the 
testing procedure come from? Do they also have only figurative character or have 
they come from a controlled experiment with blood samples of which the status of 
HIV (or not) was absolutely clear? Do we recommend the testing procedure for mass 
screening? What will be the consequences of mass screening? Is the testing suitable 
as diagnosing procedure? How can one improve the diagnosing procedure?  
Again, the application has somehow the character of a scenario and gives more 
information about which action to do next. At the level of implementation of the 
diagnosing procedure e.g. it will allow a transparent deliberation of advantages (more 
precise information) and the relative ‘cost’ (from wrong positives and from wrong 
negatives). For a teaching approach including such questions, see Vancsó (2003, 
2004). For an example related to mammography and resulting doubts if it should be 
introduced as screening procedure for 50+ women, see Hoffrage e.a. (2000). 
 2 Approaches to generalizing information 
Singular data sets are prone to variation and therefore could convey everything. If 
someone seeks to adapt to future events, or, if someone wants stable descriptions of 
the “status”, then what to rely on? There is a big need, there is also a desire to extract 
general features from singular data sets, i.e. to generalize the results found. 
Accordingly, there are a lot of strategies and models for this purpose. If one can 
derive other statements from the data at hand by logical argument, fine. If one can 
find out the exact conditions that will lead to a specific (desired) result by causal 
connection, fine. Even if the results are also due to some yet unexplained but small 
variation. However, how to find out that? 
L’homme moyen 
This figurative idea of Adolphe Quetelet (1835, see Stigler 1986) is intended to 
explain how a person gets his/her final outcome of a characteristic (e.g. height or 
head circumference etc.) by a value that represents the l’homme moyen. By errors of 
nature, however, this value is superimposed by many small errors. Quetelet 
transferred herewith the elementary error hypothesis of physics to a broader range of 
applications. This hypothesis finally leads to the normal distribution for the 
characteristic in the population (the central limit theorem of Laplace was known to 
Quetelet); a distribution that at times was rated to be a law of nature. 

data = l’homme moyen + many small errors 
 



Remarkably, the addition of these errors amounts to the unexplained variation of 
modern views, which is modelled by randomness (a normal or some other 
distribution). The l’homme moyen represents the model for the data. In terms of 
generalization, it is the generalizable feature of the data, which is to be filtered out. 
Other structural equations to split the data describe the generalizable part differently. 
All have their own interest: 

signal noise 

pattern deviation 

fit residual 
model residual 

explained unexplained variation 

data = 

common 

+ 

specific causes 
 
Classical inference from data 

Observed data are usually summarized to give 
  •  predictions for future events 
  •  a generally valid description of the population – e.g. a confidence interval 
Both procedures include a risk of statements not being valid and necessitate 
estimating the magnitude of the variation. Furthermore, they require that the data 
generation process is a random sample of the population. In terms of the idea of 
l’homme moyen this means: If one knows the value of l’homme moyen and the 
magnitude of errors, i.e. the variation, then this amounts to generalizable information, 
i.e. one can predict future outcomes to be within  

l’homme moyen ± variation 
If a person is within these bounds then it is due to no special cause, only natural 
variation is effective; if not then other specific (usually causal) explanation have to be 
searched for as he/she does not fit to the general case. In other words, there “must be” 
some other l’homme moyen type working for that person. 
Wild and Pfannkuch (1999) find out that the tendency for searching for specific 
causes is very deep-seated and would lead people to seek for causes also in case that 
an individual’s data are quite within the predicted bounds. This gives a more direct 
basis for earlier intervention e.g. in case of beginning decline of achievement say in 
sports (but also in a quality control setting). 
If the process of data generation does not compare to the naturalistic process of 
elementary errors acting upon the l’homme moyen, then the data cannot be 
generalized and used in the way indicated before. In modern terms, we could say that 
in this case the data are not from a random sample of the population. The key to 
allow for generalizing findings from data is that they stem from a random sample. 



Analogue deliberations may be made for the confidence interval method to generalize 
findings from data. Clearly, the context will be important to judge whether the 
random sample argument is valid and if the sample is actually taken from the target 
population to which the findings are to be generalized. 
EDA approach towards inference from data 
Exploratory data analysis is centred on the following structural equation: 

data = pattern + deviations 
 
So-called robust techniques should allow filtering out the pattern which means the 
procedure to find patterns should not be affected too much by some unusual, extreme 
data. Here, we are farthest from the idea of Quetelet. There is no process of natural 
superimposing small errors; they could even be very different to different elements of 
the population and quite big sometimes. In terms of the classical approach, there is no 
need for the sample to be random.  
The justification for generalizing the split of data into a specific pattern and 
deviations comes from the knowledge of the context: The pattern should give an 
interesting insight into the context; the deviations may sometimes even shed more 
light onto the problems within the context. Furthermore, the aim of EDA is a multiple 
analysis of the data with the aim of several splits and resulting views on the 
underlying phenomena. The power for generalizing the findings is based on the 
comparison of the various patterns found. Deviations get more attention; they do not 
merely reflect small error entities “caused” only by nature. Accordingly, a lot of 
effort is also invested to interpret those deviations on the basis of context knowledge 
and explain or see why they are as they are. In terms of the ‘cause split’ of data, EDA 
looks for common causes in the pattern and for specific causes in the deviations. 
The ANOVA approach to generalize findings from data 
The analysis of variance approach is a standard but sophisticated technique to split 
the variation in the data into that from specific sources and the rest variation that is 
modelled by randomness (usually by the normal distribution). We will not go into 
technical details here (see e. g. Montgomery 1991) but will just discuss the structural 
equation for the data and its similarities to the l’homme moyen idea.  

data = general 
mean + specific 

influences + unspecific 
influences 

       

data = l’homme 
moyen + effects attributed 

to treatment + unexplained 
remainder 

       

data = common 
cause + specific cause + random 

influence 



 
For illustration, we will use the context of various teaching methods A, B, .. 
(=treatment) which might have an influence on some achievement score – the target 
variable of which data are available. The specific influences are attributed to the 
treatment A (or B, ..) a ‘person’ has actually got, the unspecific influences are 
modelled by randomness. The formal procedure of ANOVA allows deciding when 
the variation due to the specific influences is big enough as compared to the variation 
due to randomness in the remainder so that an influence of the treatments may be 
generalized from the data. With respect to Quetelet’s figurative thinking, we separate 
the deviations of l’homme moyen into two parts, one is causally explained by the 
effect of the actual treatment, and a remainder that is not yet open to a causal 
explanation and that should also be small enough that it would not pay to search for 
further causal explanation. 
 3 Structuring of thinking 
Concepts and models allow us to ‘see’ reality in a specific way – this acts as feedback 
also on our thinking, it structures our thinking insofar as it anchors analogies and 
figurative ideas and archetype models in our approach to reality. We have seen from 
the examples in section 1 that probability has a strong feature of building up 
scenarios for reality and not always to directly model reality. As a consequence, that 
has a deep impact on how learners can integrate probabilistic concepts into their 
repertoire as there is only indirect measures of how close the model depicts the real 
situation and also the success of a model is not easily to be judged. No wonder that 
mis-conceptions are abundant and deep-seated, i.e. are often not revised by pertinent 
education. 
Probability is more than a material property 
Normally, we learn by trial and error. By wrong decisions we lose and thereby we 
think about improvements and come up with better models and so forth. Here only 
one simple example is given to illustrate that matters with probability are much more 
complicated and feedback about success is by no means open to direct interpretation.  
Take the two Falk wheels of fortune of Fig. 2 and give the choice which to spin. 
Obviously the left wheel has the bigger sector for winning (=1), therefore one should 
choose it. However, once you spin, you have not a high probability of winning, .. , 
and you might lose. What then? Was the choice wrong? The best action here is not 
awarded. Thus, you might speculate about the reasons why. At times, I checked this 
with my then seven years old daughter and right from the beginning she wondered 
about the special margin of the right wheel, …, and concluded that grown-ups should 
take the left but children had to take the right…(the author named the wheels after 
Ruma Falk). 



 

 
 
 

Fig. 2 

 
With reference to the scenario use of probability in section 1 and with respect to the 
example above, relative frequencies as companion of probabilities are thus often 
more or less a metaphoric way to describe probability (for the genuine theoretical 
nature of probability see also Steinbring 1991). Yet they amount to a useful way to 
describe some features of the abstract concept, which is out of the reach of 
understanding. All the more it often may be used as a short cut to a mathematical 
derivation of probabilities by the method of simulation. 
The idea of weighing the evidence 
Relevant information about a situation under uncertainty may come from: 
  •  Combinatorial multiplicities of possibilities, which are judged to be equally likely 
  •  Frequencies of events in past or comparable series, which are judged to be 
 ‘similar’ 
  •  Personal judgement of involved risks 
Core of the further information process to derive at a decision is the concept of 
expectation as illustrated in some of the examples of section 1. Quite often the three 
cases above involve – despite exact numerical values for the probability requested – 
qualitative aspects and the scenario character of the models used. Calculating 
(expected) values of tentative decisions in order to find a justification for the final 
decision made may be viewed as an exchange between ‘money’ (utility, cost) and 
uncertainty.  
If someone is faced with a decision, the consequences of which lie in the future and 
cannot be foreseen (except a listing of all cases, which are considered to be 
‘possible’), then one has to find some optimality principle to signify one or some of 
the decisions as better than others. Minimizing maximum ‘loss’ works without 
introducing probabilities, ordering decisions by expected ‘loss’ requires the weighing 
of uncertainty. The potential of the method increases by an investigation of how 
sensitive the derived decision reacts to changes in the weighing process – again a plea 
for the scenario character of the probability approach. 
Mis-Conceptions 
With the indirect feedback to the probability approach it is not surprising that 
thinking in probabilities is not well integrated into the cognitive frame of individuals. 
Often, modelling a situation involves an attribution and separation of and between 
causal and random parts (see the discussion in section 2). The causal part of a 



problem, if separated and explained, allows for more direct interventions and thus 
seems more promising. 
For example, in Wild and Pfannkuch (1999), the actual score of a 2 out of 5 is 
compared to a probability of scoring of 70%. Despite the fact that it does not amount 
to a significant deviation from that probability (which means no intervention is 
necessary), people tend to seek for other, causative explanations of the low actual 
score. Once one has found such a causative explanation (e.g. temporary private 
problems of the player, a small physical injury, a quarrel in the team etc.), the track 
for success promising intervention is open. This in mind, people seem to extremely 
favour the causative approach (see Wild and Pfannkuch 1999). 
In the tradition of Kahneman and Tversky (see e. g. Tversky and Kahneman 1972, or 
Kahneman e. a. 1982), a lot of misconceptions have been identified and described. 
Intuitive strategies like representativity, anchoring, and causal strategies constitute 
subsidiary strategies to surmount the difficulties in the process of weighing the 
uncertainty (for a discussion see Borovcnik and Peard, 1996). Among many others, 
here only the outcome orientation of Konold may additionally be referred to. 
According to it, information available to a person is more likely to be actually used in 
solving a problem, if it allows for a direct prediction of the outcome in quest, or, the 
problem is reformulated in order to allow for such a direct prediction (see Falk and 
Konold 1992). This fits quite well to Wild and Pfannkuch’s observation above. 
From the abundant mis-conceptions, one may conclude the difficulty of the venture to 
teach probability concepts and its necessity. This is also true for the education of the 
statistics part as not only Wild and Pfannkuch (1999) describe individual’s problems 
to discriminate properly between causative and random parts in splitting and 
explaining variation in empirical data. 
To use misconceptions effectively in teaching, it is not sufficient to confront learners 
with relevant situations which are prone to wrong approaches; instead of trying to 
revise wrong intuitions (which are very basic and deep-seated) one should build a 
bye-pass by re-presenting the situations by (very) simple material forms that allow 
for solutions – for promising examples in view of the Bayesian formula see Bea and 
Scholz (1995), Krauss e.a. (2002), or Hoffrage e.a. (2002). 
Probabilistic and statistical thinking 
From the examples in the first two sections, types of situations and types of thought 
that help with them are derived. In all cases to follow, a mingling between 
probabilistic and statistical thinking may be traced. With some twist of thought, the 
one or the other part predominates. Always the following strategies may be 
supportive in presenting (or in solving) the following standard situations: To give 
simple analogies, which are similar in characteristic features and which have 
illustrative potential for the solution. To give simulations which necessitate 
organizing clearly the model assumptions for the involved situation and effortlessly 



yielding the solution. To re-formulate, or even to re-present the situation in a more 
basic manner. 
One-off decision: The procedure of attributing (expected) values to decisions by an 
exchange between uncertainty and ‘money’ goes back to Christian Huygens 1657 
(see Bentz 1983 or Freudenthal 1980). He developed his ideas in the context of 
lottery games and speaks of some uncertain lottery to ‘be equally worth as’ some 
amount of money given by a formula (for the expectation). Huygens himself already 
applied his concept of expected value also to insurances especially to life insurances. 
The less agreement on weighing the uncertainty, the more it gets important to supply 
additional justification to the weighing by investigating the consequences of different 
weights – the stronger becomes the scenario character of probability as was discussed 
in section 1.  
To think about uncertain situations in terms of scenario like expected values and 
respect that as one tool amongst others to derive at transparent decisions, is a basic 
ingredient of stochastic reasoning. It cannot be stated clearly enough that the values 
for the decisions allow to signify some decisions as better than others without making 
it possible to predict (or even attempting to aim at predicting) the specific outcome in 
the ‘future’ – this seems counter-intuitive not only against the background of 
Konold’s findings on the ubiquity of the outcome orientation in individuals. 
Decision in the face of circumstantial evidence: Abundant situations require 
proceeding according to the actual values of conditional probabilities relative to new 
facts. Judgement before court by circumstantial evidence, or diagnosing procedures 
in medicine, are just two prominent examples of that kind of reasoning. Formally, the 
new conditional probabilities are calculated with the formula of Bayes. The never-
ending disputes about the validity of prior probabilities (prior to the circumstantial 
evidence) indicate again the scenario-character of probability. Furthermore, the two 
involved ‘directions’ of conditional probabilities do have a complete different 
connotation from a causal standpoint: Whereas the conditional probability of e.g. 
having some virus to having a positive result on the diagnosing test is causally (and it 
is only by some errors possible that a negative result is achieved at), the backward 
direction of conditional probability from a positive diagnosis to actually having the 
virus is merely indicative. A fact, which is hard to accept for many due to a causative 
mis-interpretation of it. Findings from research on misconceptions tell that 
conditional probabilities are grossly overestimated in case of a possible causal 
interpretation, and are often even neglected (too small to be taken into consideration) 
when they are only indicative.  
To think about pertinent situations in suitable terms of a Bayes model, amounts to 
basic ingredients of stochastic thinking. There are many endeavours to improve 
teaching on that issues. While it seems inadequate to transform us to Bayesian 
thinkers, it establishes a great progress in the teaching of probability to make us 
aware about the cognitive biases from causal re-interpretations. A great help with that 
comes from very basic material re-presentations, which demystify the causal 



connotations that always come back to mind if the mathematics involved becomes 
too complicated. From all the endeavours, here only the approach of Krauss e. a. 
(2002) of natural frequencies is referred to. 
‘Natural’ variation of randomness: Investigating the variation of data involves often 
a split of the data into explained und unexplained parts, or in causative and random 
parts, see section 1. As this separation is neither unique nor clear-cut, our intuition 
has to be backed up by simulation studies about what it would mean if the variation 
were only random. What are the implications of ‘pure’ randomness? The so-called 
‘square root of n’ law may be demonstrated by such investigations and teaching 
experiments, see e.g. Riemer (1991), or Kissane (1981): If a target variable is the sum 
– or better the mean value – of other variables (that need not necessarily have the 
same distribution, e.g. 1 or 0 according to some dichotomous experiment, or the 
result of throwing a die), then  
  •  a two sigma-rule becomes more accurate with increasing number of summands: 
approximately 95% of (simulated) values of the target variable are between the mean 
value plus or minus two times the standard deviation of the target variable, 
  •  the standard deviation of the target variable decreases by a factor 1/√n , n being 
the number of summing variables. 
This is a manifestation of the elementary error hypothesis of physics of earlier times 
and a concrete example of the central limit theorem that states that the ‘limiting’ 
distribution for the (mean) target variable is a normal distribution.  
To think about pure randomness’ consequences in terms of a normal distribution and 
in terms of an ever-decreasing variation (by the square root of the number of ‘trials’) 
is the key to many a statistical procedure. To name only one, the estimation of a 
population mean by the mean of a random sample. The precision of that procedure is 
improved by larger random samples. The amount of improvement may be read off 
and adjusted to some accuracy required by investigating a sample, which is large 
enough. The model situation with the same summands (as in the simulation situation) 
being independently taken from the same population will also shed light on the 
importance of a random sample and not just an arbitrary sample to be taken in order 
that the law comes true. 
 4 Structuring reality 
It would be too restricted to think of structuring reality by models as to depict the 
relevant features of a real-life situation, abandon less relevant ones, and to “filter out” 
a model that represents more or less an image of the original situation. Within that 
model one could then derive at mathematical solutions and re-interpret them into the 
context problem from the onset. This is one feature of probabilistic modelling only, 
one that is truly important, but there is more to say about probability models with 
respect to their more indirect and scenario character already described within the 
examples of sections 1 and 2. 



Models and concepts allow to structure thinking and this in turn allows us to apply 
these models to reality structuring it and (partially) solving the problem there. It is 
worth to devote some extra thought on the objective side of models structuring 
reality. There are more ingredients that come to the fore with this focus, especially 
the interplay between causative and random parts of the variation of variables, which 
allows dealing with real problems. 
The split of variation into causative and random parts  
In empirical research, often causal influences for the variation of a target variable are 
searched for. For illustrative purpose, the reader should think of several alternative 
treatments, which could affect a target variable. The simplest model would be (with 
some known function f): 

Target 
variable = f(treatment effect)  

 
The variation of the target variable would then uniquely be determined by the 
treatment effect. However, there is a lot more sources of variation in the data for the 
target variable like plain measurement errors, variable external circumstances of the 
experiment, other attributes of the ‘persons’ which also could influence the final 
value, variation due to the specific persons that are sampled and investigated, etc. We 
have here a similar but more differentiated situation as in the l’homme moyen figure 
of Quetelet. We will give a simple structural equation of how the target variable 
emerges: 

Target 
variable = a constant 

value + treatment 
effect + influential 

variable + random 
‘error’ 

 
Treatment and influential variables are explanatory variables, which explain the 
variation of the target variable by some causative (or associative) argument, the 
random part could represent further causal relations between values of some other 
variables of the person investigated and his/her value of the target variable. If one can 
establish tight relations of some of these with the target variable, then they could be 
integrated into the explanatory variables (see also Wild and Pfannkuch 1999). 
However, lacking more precise information about these variables necessitates dealing 
with them as if they were random.  
The question if treatments are effective, i.e. different treatments have a ‘substantially’ 
different influence on the target variable, is now transformed to the question if the 
variation of the target variable is mostly ‘explained’ by the variation of the treatment 
effect, or if it is due to other influential variables, or even if it is due only to variation 
of those parts which are modelled to be random (and not yet open to causative 
explanation). However, the split into causative and random parts, the split of 
causative parts into treatment and other explanatory effects is not unique and may 
influence of course the final findings heavily.  



The question when the causal part of the model is big enough to be judged as relevant 
is a technical one met by several specific significance tests, which should not worry 
us here. It is only important to state that these procedures rely on an investigation 
how pure randomness would influence the target variable. 
An example for the structural equation ‘in action’ 
The following example deals with the explanation of the target variable ‚body 
weight’. From many examples we have learned that there is quite a tight relation 
between weight and height of persons. Another explanatory variable is gender. The 
remainder is unexplained (by further influential variables) and modelled to be 
random. It could, for example, be explained further by the body type of a person 
(pyknic, leptosome etc.), or it could be explained by race, or by nutrition in early 
childhood etc. 

Body 
weight = a constant 

value + gender 
effect + b × body 

height + random 
‘error’ 

 
Without the gender term, one would have a simple regression line for the model to 
describe the relation between weight and height. Separated between genders there is 
quite a different slope of the regression line. If the investigator does not include 
gender into the study, the variable would have the status of a confounding variable. A 
confounding variable changes or even completely reverses the relations found. Once, 
data are available on gender, the variable may be tested if it should be taken into the 
model; in case if it were a continuous variable like the height, it would be called co-
variate. A covariate is simply a candidate to be included in the model for the data. 
The remainder is not open to causative explanation as there are no specific data 
available. It will be modelled simply by pure randomness. The evaluation of 
explanatory variables if they should be integrated into the model for the data is done 
in comparison to the ‘size’ of the remainder: are the changes in variation due to 
candidates for explanatory variables big enough in comparison to the variation due to 
that remainder.  
Neither is the interactive building of the model unique, nor are the components 
unique, which constitute the remainder. For an interpretation of the final model for 
the target variable, the separation of variation into causative (explained) and random 
(non explained) parts is essentially – the split is not ontological but only pragmatic. If 
this separation yields a relevant model, the causative interpretation may lead to 
promising interventions. 
The formal procedure to separate the model entities is based on significance tests in 
the ANOVA or ANCOVA models; we will not go into the details. An intuitive 
understanding of this separation is at the core of anyone’s reasoning who is involved 
or concerned with statements, which are backed up empirically by data from 
investigations. 



Furthermore, the intuitive strive for looking for causative explanations for 
phenomena at hand, is not being tricked out by probabilistic reasoning. To the 
contrary, probabilistic models are a key factor to filter out causative elements of a 
problem to get more control over interventions on the target variable. 
Two model situations to equalize other influential variables 
Generalization of findings from samples to the population: To get reliable 
information about the mean of a population, a sample is taken from that population 
and the sample mean is taken as an estimate. If ‘measuring’ a single object of the 
population may be modelled merely by ‘natural’ variation of randomness, then all the 
properties of that randomness from the last section may be applied to an artificial 
summing or calculating the mean value of all the objects. Hence, the normal 
approximation and confidence intervals may be derived. This modelling is justified 
by a random sampling procedure to select objects for the sample to be ‘measured’. It 
is the random sampling which guarantees – with the exception of some calculable 
risk – that the results are generalizable, i.e. that the confidence interval covers the 
‘true’ mean of the population. In this sense, with random sampling the sample drawn 
is representative for the population (see also Borovcnik 1992). 
To think that samples are representative of populations if the sampling is ‘purely’ 
random, is a key concept for the generalization of empirical findings. Randomness 
avoids all conceivable selective properties, which would lead to biased samples, or, 
randomness equalizes all selective properties, so that finally the sample is 
representative for the population. Any arbitrary procedure to select the sample is 
prone to systematic, unforeseeable and uncontrollable deviations. 
Generalization of differences between two samples: Often, a comparison between two 
(or more) groups has to be made. The groups have got a different treatment – one e.g. 
a special medication for insomnia, the other only a placebo (a harmless substitute 
without a pharmaceutical substance). Is the medication more effective than placebo, 
is the decisive question. Of course, the two groups have to be as equal as possible 
with respect to all characteristics that could influence the effect of the treatment: 
People have not to know that they get the placebo, people in the treatment group 
should not represent the most persistent cases already proven insensitive to any 
treatment, and so forth. Strictly speaking, aught the groups to be drawn purely 
randomly from the population? With the exception of very few cases, this could not 
be fulfilled in practice.  
However, if the investigated group as a whole does not differ substantially from the 
population, it is sufficient that a random attribution process establishes the subgroups 
for the different treatments, i.e. randomness decides to which group the next patient 
will belong. This random attribution should equalize all differences in the objects 
across the whole subgroups, which could have a causative influence on the target 
variable representing the ‘success’ of the treatment. Insofar, the random attribution 
should eliminate, or better equalize all causative elements that could make the 



subgroups different (i.e. equalize the effect of all confounding variables) – the 
actually observed differences then may be attributed solely to the treatment and are 
thus generalizable. 
 5 Statistical Thinking 
A brief introduction into the debate is given against the background that at all times 
the argument was used that there is more to probability and statistics than is 
contained in the mathematical version of the pertinent concepts – a special kind of 
thinking was advocated; several authors refer to an outstanding role of an interplay 
between intuitions and formal concepts (see Fischbein 1975, or Borovcnik 1992). 
The educational debate on probabilistic and statistical thinking 
The educational debate on probabilistic and statistical thinking is a long-ongoing one. 
Even in times as early as the 70’s when the accent was heavily put on the 
mathematical and probabilistic part of the curriculum, a special type of thinking was 
argued to be behind the formal concepts – probabilistic thinking. It was not quite 
clear what could be understood by that but the argument was that there is some 
additive not yet included in the mathematical concepts. However, when put to a 
crucial test, either mystique arguments were used to describe and justify what 
probabilistic reasoning is, or it was reduced to key ideas in the mathematical 
development of the concepts. 
Heitele (1975), e.g. gave a catalogue of fundamental ideas, which on the whole 
should constitute the various dimensions of probabilistic thinking. His list is reading 
like the titles of the chapters in a mathematical textbook on probability but could 
always also be attributed to some more general idea at second inspection:  
  •  Calibrating the degree of confidence 
  •  The probability space 
  •  The rule of addition 
  •  Independence 
  •  Uniform distribution and symmetry 
  •  Combinatorics to count equally likely cases 
  •  Urn models and simulation,  
  •  The idea of a sample to represent a population 
  •  The idea of a random variable and its distribution 
  •  Laws of large numbers. 
There were a number of attempts to get a clearer image of the fundamental ideas 
behind to describe probabilistic thinking, e.g. Borovcnik (1997) endeavoured to 
arrange the ideas around the idea of information as a central hinge between 
individual’s intuitions and the formal concepts of the mathematical theory:  
  •  Probability as a special type of information about an uncertain ‘issue’ 
  •  The idea of revising information when faced with new evidence 
  •  To make transparent which information is used–also in the simulation of situations 



  •  To condense information to a few numbers (thus eliminating randomness) 
  •  To measure the precision of information 
  •  To guarantee the representativity (=generalizability) of partial information  
  •  To improve the precision of information 
The roots of probabilistic reasoning in the psychological research go back to 
Kahneman and Tversky. They identify various tendencies in individual’s behaviour 
to wrongly re-interpret problems and solve them in a way different to the accepted 
standard. Their approach of misconceptions had a great impact on further educational 
research. In an empirical investigation on children’s behaviour, Green (1983) found 
abundant misconceptions that were to be expected according to Kahneman and 
Tversky. Scholz (1991) tried a constructive approach of a cognitive framework for 
individuals to allow for probabilistic reasoning in an adequate manner (i.e. to accept a 
standard interpretation of situations and end up with acceptable solutions). The work 
of Fischbein (1975) is devoted to develop instructive approaches towards developing 
a sound interplay between individual’s intuitions and formal concepts of mathematics 
as a key to develop probabilistic reasoning. 
From the 80’s on, initiated by the EDA discussion started by Tukey (1977), the focus 
shifted towards statistical thinking and reasoning. The new motto then was numeracy, 
i.e. to learn to understand data and the information, which lies in them. The shift also 
involved more applications, real-life situations, all leading away from mathematics 
and probability – and also away from games of fortune. In the German debate at that 
time also procedures of formal statistical inference entered the stage and won much 
attention in the reform of curricula (the high goals of those times have now made 
place for more realistic ones, especially enabled by the simulation technique and the 
resampling idea for statistical inference). Numeracy and statistical reasoning 
internationally was promoted by big projects in the U S A, beginning with the 
Quantitative Literacy project, see e.g. Scheaffer 1991.  
Numeracy and ‘graphicacy’ was targeted at simple but intelligent data analysis 
alongside the techniques of descriptive statistics and EDA. The role of the context 
where the data stem from, for the interpretation of results got increasing attention; it 
became undisputed that a sound analysis of data and results is not really possible 
without reference to the context. In the German debate, Biehler (1995) is seeking a 
balance between probabilistic and statistically loaded curricula, as courses biased 
towards data analysis would cause an all-too simple and probability free conception 
of stochastics. 
However, asked what statistical thinking could be, no one gave a clear answer. This 
unsatisfactory circumstance was the starting point for Wild and Pfannkuch to 
integrate ideas from empirical research.  
Statistical thinking as contrasted to probabilistic thinking is involved in all steps from 
the provisional problem out of a context, across all cycles of making the problem 
more precise and model it, to a final model substantiated by the data. Statistical 



thinking is tightly related to the process of empirical research to filter out 
generalizable findings from empirical data. More or less, statistical thinking might be 
associated with strategies to increase knowledge.  
The approach towards statistical thinking by Wild and Pfannkuch 
Here, a brief discussion of statistical thinking along the lines of the approach by Wild 
and Pfannkuch (1999) will be given. According to their approach, four dimensions of 
that type of thinking should be regarded: 
  •  The investigative cycle 
  •  The interrogative cycle 
  •  Types of thinking involved 
  •  Dispositions 
The investigative cycle is a systems analysis approach toward the initial (research) 
questions. It involves the components of  

Problem → Plan → Data → Analysis → Conclusions 
which might be run through several times for refinement.  
In the problem phase it comprises to grasp the “system dynamics” of describing the 
target variable, i.e. to find ‘all’ relevant explanatory variables, and to reflect about 
possible confounding variables. Also, assumptions of relations, hypotheses on 
relations from relevant other investigations or theories, have to be used to clarify and 
“define problems”. Omissions in that phase give rise to a bulk of flops in empirical 
research.  
In the planning phase, the investigator has to deal with the development of a 
“measurement system” for all the included variables. A “design” has to be developed 
how the “sampling” and the “data management” actually has to be undertaken. A 
“pilot study” should give indications if the plan is adequate and practicable. 
The data phase comprises “data collection, data management and data cleaning”. 
The analysis phase comprises “data exploration, planned analyses, unplanned 
analyses, and hypothesis generation”. 
The conclusions phase consists of “interpretation, conclusions, new ideas, and 
communication”. 
The interrogative cycle represents the strategic part of the investigation and includes 
the following phases (see Wild and Pfannkuch 1999 for details):  

Generate → Seek → Interpret → Criticise → Judge 
Types of thinking: Wild and Pfannkuch (1999) discern between general types of 
thinking and those fundamental to statistical thinking. For the general types, they list 
“strategic, seeking explanations, modelling, applying techniques”. Specific to 
statistical thinking they list 
  •  Recognition of need for data 



  •  Transnumeration  
– changing representations to engender understanding […] 

  •  Consideration of variation 
– noticing and acknowledging, 
– measuring and modelling for the purposes of  

prediction, explanation, or control 
– explaining and dealing with investigative strategies 

  •  Reasoning with statistical models 
  •  Integrating the statistical and the contextual  

– information, knowledge, conception 
Dispositions amount to the psychological side of investigations and comprise the 
following attitudes: Scepticism, imagination, curiosity, openness (to ideas that 
challenge preconceptions), a propensity to seek deeper meaning, being logical, 
engagement, and perseverance. 
Wild and Pfannkuch (1999) then proceed to the split of sources of variation in data 
into real (a characteristic of system) and induced (by data collection). 
Finally they come up with the explanation of the regularities, the model found on 
basis of the data analysis process. They refer to statisticians who see the biggest 
contribution of their discipline in the isolation and modelling of ‘signal’ in the 
presence of ‘noise’. Then they discuss about the relative and interchangeable 
character of random and causal influences. They refer to randomness as “just a set of 
ideas, an abstract model, a human invention which we use to model variation in 
which we can see no pattern”. In that they come close to the scenario character of 
probability described here. 
 6 Conclusion 
Questions central to probabilistic and statistical thinking have been raised. They 
should clarify that both types of thinking are mingling and are not easily be 
described. From the discussion, however, crucial components of these types of 
thinking should become clearer. There will be no simple answer also after further 
endeavours into that topic. Even if the ideas are not easily described, the foregoing 
exposition and the examples illustrate how pertinent thinking is organized and to 
which end it could serve. And how such thinking is blurred.  
The role and eminent importance of data, the context where they stem from, and the 
attitude of empirical research should become quite clear from the discussion. The 
interpretation of probability statements as scenario figures assisting in a broader 
problem solving process to come up with a more transparent decision may become 
more accepted by the examples outlined in the paper. The splitting of variation in 
data into causative and random parts in the search of explaining, predicting, and 
controlling phenomena may be a guideline for further attempts to clarify the issues of 
statistical thinking. 
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